Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.359
Filtrar
1.
Mol Biol Rep ; 51(1): 509, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622237

RESUMO

BACKGROUND: The main causes of hospital- and community-acquired urinary tract infections (UTIs) are a group of Escherichia coli (E. coli) strains with multiple virulence factors known as uropathogenic E. coli. METHODS AND RESULTS: One hundred E. coli isolates from the urine specimens of hospital- and community-acquired UTI patients were characterized based on their virulence factors and genetic relatedness using PCR and RAPD‒PCR, respectively. Among all, the traT (71%), sitA (64%), ompT (54%), malX (49%), ibeA (44%), tsh (39%), hlyD (18%) and cnf1 (12%) genes had the highest to lowest frequencies, respectively. There was no significant difference between the frequency of tested virulence genes in E. coli isolates from inpatients and outpatients. The frequency of the hlyD gene was significantly greater in E. coli isolates from patients hospitalized in gynecology, dermatology and intensive care unit (ICU) wards than in those from other wards. Eight virulence gene patterns were common among the isolates of inpatients in different wards of the same hospital, of which five patterns belonged to the isolates of inpatients in the same ward. More E. coli isolates with similar virulence gene patterns and greater genetic similarity were found in female patients than in male patients. The analysis of the RAPD‒PCR dendrograms revealed more genetic similarities among the E. coli isolates from inpatients than among those from outpatients. CONCLUSION: Our findings indicate the presence of a wide variety of virulence factors in E. coli isolates and the possibility of spreading the same clones in different wards of the hospital.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Humanos , Masculino , Feminino , Infecções por Escherichia coli/tratamento farmacológico , Virulência/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico , Infecções Urinárias/tratamento farmacológico , Hospitais , Tipagem Molecular , Fatores de Virulência/genética , Escherichia coli Uropatogênica/genética , Antibacterianos/uso terapêutico
2.
Proc Natl Acad Sci U S A ; 121(16): e2310693121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38607934

RESUMO

Urinary tract infections (UTI) account for a substantial financial burden globally. Over 75% of UTIs are caused by uropathogenic Escherichia coli (UPEC), which have demonstrated an extraordinarily rapid growth rate in vivo. This rapid growth rate appears paradoxical given that urine and the human urinary tract are relatively nutrient-restricted. Thus, we lack a fundamental understanding of how uropathogens propel growth in the host to fuel pathogenesis. Here, we used large in silico, in vivo, and in vitro screens to better understand the role of UPEC transport mechanisms and their contributions to uropathogenesis. In silico analysis of annotated transport systems indicated that the ATP-binding cassette (ABC) family of transporters was most conserved among uropathogenic bacterial species, suggesting their importance. Consistent with in silico predictions, we determined that the ABC family contributed significantly to fitness and virulence in the urinary tract: these were overrepresented as fitness factors in vivo (37.2%), liquid media (52.3%), and organ agar (66.2%). We characterized 12 transport systems that were most frequently defective in screening experiments by generating in-frame deletions. These mutant constructs were tested in urovirulence phenotypic assays and produced differences in motility and growth rate. However, deletion of multiple transport systems was required to achieve substantial fitness defects in the cochallenge murine model. This is likely due to genetic compensation among transport systems, highlighting the centrality of ABC transporters in these organisms. Therefore, these nutrient uptake systems play a concerted, critical role in pathogenesis and are broadly applicable candidate targets for therapeutic intervention.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Escherichia coli Uropatogênica , Humanos , Animais , Camundongos , Transportadores de Cassetes de Ligação de ATP/genética , Fatores de Virulência/genética , Escherichia coli Uropatogênica/genética , Proteínas de Membrana Transportadoras/genética , Virulência
3.
Front Cell Infect Microbiol ; 14: 1322119, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638825

RESUMO

Background: Uropathogenic Escherichia coli (UPEC) activates innate immune response upon invading the urinary tract, whereas UPEC can also enter bladder epithelial cells (BECs) through interactions with fusiform vesicles on cell surfaces and subsequently escape from the vesicles into the cytoplasm to establish intracellular bacterial communities, finally evading the host immune system and leading to recurrent urinary tract infection (RUTI). Tailin Fang II (TLF-II) is a Chinese herbal formulation composed of botanicals that has been clinically proven to be effective in treating urinary tract infection (UTI). However, the underlying therapeutic mechanisms remain poorly understood. Methods: Network pharmacology analysis of TLF-II was conducted. Female Balb/C mice were transurethrally inoculated with UPEC CFT073 strain to establish the UTI mouse model. Levofloxacin was used as a positive control. Mice were randomly divided into four groups: negative control, UTI, TLF-II, and levofloxacin. Histopathological changes in bladder tissues were assessed by evaluating the bladder organ index and performing hematoxylin-eosin staining. The bacterial load in the bladder tissue and urine sample of mice was quantified. Activation of the TLR4-NF-κB pathway was investigated through immunohistochemistry and western blotting. The urinary levels of interleukin (IL)-1ß and IL-6 and urine leukocyte counts were monitored. We also determined the protein expressions of markers associated with fusiform vesicles, Rab27b and Galectin-3, and levels of the phosphate transporter protein SLC20A1. Subsequently, the co-localization of Rab27b and SLC20A1 with CFT073 was examined using confocal fluorescence microscopy. Results: Data of network pharmacology analysis suggested that TLF-II could against UTI through multiple targets and pathways associated with innate immunity and inflammation. Additionally, TLF-II significantly attenuated UPEC-induced bladder injury and reduced the bladder bacterial load. Meanwhile, TLF-II inhibited the expression of TLR4 and NF-κB on BECs and decreased the urine levels of IL-1ß and IL-6 and urine leukocyte counts. TLF-II reduced SLC20A1 and Galectin-3 expressions and increased Rab27b expression. The co-localization of SLC20A1 and Rab27b with CFT073 was significantly reduced in the TLF-II group. Conclusion: Collectively, innate immunity and bacterial escape from fusiform vesicles play important roles in UPEC-induced bladder infections. Our findings suggest that TLF-II combats UPEC-induced bladder infections by effectively mitigating bladder inflammation and preventing bacterial escape from fusiform vesicles into the cytoplasm. The findings suggest that TLF-II is a promising option for treating UTI and reducing its recurrence.


Assuntos
Cistite , Infecções por Escherichia coli , Doenças do Sistema Imunitário , Infecções Urinárias , Escherichia coli Uropatogênica , Feminino , Camundongos , Animais , Bexiga Urinária/microbiologia , NF-kappa B , Levofloxacino/farmacologia , Galectina 3 , Interleucina-6 , Receptor 4 Toll-Like , Infecções Urinárias/microbiologia , Infecções por Escherichia coli/microbiologia
4.
Sci Rep ; 14(1): 8978, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637685

RESUMO

tRNA modifications play a crucial role in ensuring accurate codon recognition and optimizing translation levels. While the significance of these modifications in eukaryotic cells for maintaining cellular homeostasis and physiological functions is well-established, their physiological roles in bacterial cells, particularly in pathogenesis, remain relatively unexplored. The TusDCB protein complex, conserved in γ-proteobacteria like Escherichia coli, is involved in sulfur modification of specific tRNAs. This study focused on the role of TusDCB in the virulence of uropathogenic E. coli (UPEC), a bacterium causing urinary tract infections. The findings indicate that TusDCB is essential for optimal production of UPEC's virulence factors, including type 1 fimbriae and flagellum, impacting the bacterium's ability to aggregate in bladder epithelial cells. Deletion of tusDCB resulted in decreased virulence against urinary tract infection mice. Moreover, mutant TusDCB lacking sulfur transfer activity and tusE- and mnmA mutants revealed the indispensability of TusDCB's sulfur transfer activity for UPEC pathogenicity. The study extends its relevance to highly pathogenic, multidrug-resistant strains, where tusDCB deletion reduced virulence-associated bacterial aggregation. These insights not only deepen our understanding of the interplay between tRNA sulfur modification and bacterial pathogenesis but also highlight TusDCB as a potential therapeutic target against UPEC strains resistant to conventional antimicrobial agents.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Animais , Camundongos , Virulência/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Infecções Urinárias/microbiologia , Fatores de Virulência/genética , Transferases/metabolismo
5.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38486355

RESUMO

AIMS: The main objective of this study was to modify a recently reported multi-purpose artificial urine (MP-AU) for culture and gene expression studies of uropathogenic Escherichia coli (UPEC) strains. METHODS AND RESULTS: We used liquid chromatography mass spectrometry (LC-MS) to identify and adjust the metabolic profile of MP-AU closer to that of pooled human urine (PHU). Modification in this way facilitated growth of UPEC strains with growth rates similar to those obtained in PHU. Transcriptomic analysis of UPEC strains cultured in enhanced artificial urine (enhanced AU) and PHU showed that the gene expression profiles are similar, with <7% of genes differentially expressed between the two conditions. CONCLUSIONS: Enhancing an MP-AU with metabolites identified in PHU allows the enhanced AU to be used as a substitute for the culture and in vitro gene expression studies of UPEC strains.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Humanos , Escherichia coli Uropatogênica/genética , Perfilação da Expressão Gênica , Expressão Gênica , Proteínas de Escherichia coli/genética , Fatores de Virulência/genética
6.
Cytokine ; 178: 156577, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38479049

RESUMO

PURPOSE: Urinary tract infection (UTI) is one of the most common human bacterial infections primarily caused by uropathogenic E. coli (UPEC). Empiric treatment in UTI cause emergence of multidrug resistance and limit treatment options. Understanding UTI at the molecular level with respect to the causative pathogen as well as subsequent host response pose an absolute necessity towards appropriate clinical management. This study aimed to investigate host cytokine response in mouse UTI model with respect to bacterial colonization and associated virulence gene expression upon infection. METHOD: Mouse UTI model was established with two clinical UPEC isolates E. coli NP105 and E. coli P025. UPEC colonization in bladder and kidney was evaluated by bacterial culture (CFU/ml). Histopathology of the tissues were examined by hematoxylin and eosin staining. PCR and real time PCR were used to detect the incidence and expression of respective bacterial genes. Cytokine concentrations in tissues and sera were evaluated using ELISA. GraphPad prism version 8.0.2 was used for statistical interpretation. RESULT: Highest bacterial colonization was observed on 7th and 9th day post infection (p.i). in bladder and kidney of mouse infected with E. coli P025 and E. coli NP105 respectively with a distinct difference in relative expression of fimH and papC adhesin genes in vivo. IL-1ß level in tissues and sera of E. coli NP105 and E. coli P025 infected mouse was significantly different but the IL-17A, GCSF, TGF-ß levels were comparable. CONCLUSION: These findings show a role of IL1ß to stratify pathogenicity of UPEC in mouse UTI model.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Humanos , Animais , Camundongos , Citocinas , Infecções por Escherichia coli/microbiologia , Infecções Urinárias/microbiologia , Bexiga Urinária/microbiologia
7.
mBio ; 15(4): e0352223, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38470052

RESUMO

Urinary tract infection (UTI) is a ubiquitous infectious condition, and uropathogenic Escherichia coli (UPEC) is the predominant causative agent of UTI. Copper (Cu) is implicated in innate immunity, including against UPEC. Cu is a trace element utilized as a co-factor, but excess Cu is toxic due to mismetalation of non-cognate proteins. E. coli precisely regulates Cu homeostasis via efflux systems. However, Cu import mechanisms into the bacterial cell are not clear. We hypothesized that Cu import defective mutants would exhibit increased resistance to Cu. This hypothesis was tested in a forward genetic screen with transposon (Tn5) insertion mutants in UPEC strain CFT073, and we identified 32 unique Cu-resistant mutants. Transposon and defined mutants lacking yhiM, which encodes a hypothetical inner membrane protein, were more resistant to Cu than parental strain. Loss of YhiM led to decreased cellular Cu content and increased expression of copA, encoding a Cu efflux pump. The CpxAR envelope stress response system was activated in the ΔyhiM mutant as indicated by increased expression of cpxP. Transcription of yhiM was regulated by CueR and CpxR, and the CpxAR system was essential for increased Cu resistance in the ΔyhiM mutant. Importantly, activation of CpxAR system in the ΔyhiM mutant was independent of NlpE, a known activator of this system. YhiM was required for optimal fitness of UPEC in a mouse model of UTI. Our findings demonstrate that YhiM is a critical mediator of Cu homeostasis and links bacterial adaptation to Cu stress with the CpxAR-dependent envelope stress response in UPEC.IMPORTANCEUPEC is a common bacterial infection. Bacterial pathogens are exposed to host-derived Cu during infection, including UTI. Here, we describe detection of genes involved in Cu homeostasis in UPEC. A UPEC mutant lacking YhiM, a membrane protein, exhibited dramatic increase in resistance to Cu. Our study demonstrates YhiM as a nexus between Cu stress and the CpxAR-dependent envelope stress response system. Importantly, our findings establish NlpE-independent activation of CpxAR system during Cu stress in UPEC. Collectively, YhiM emerges as a critical mediator of Cu homeostasis in UPEC and highlights the interlinked nature of bacterial adaptation to survival during Cu and envelope stress.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Animais , Camundongos , Cobre/metabolismo , Escherichia coli Uropatogênica/metabolismo , Infecções por Escherichia coli/microbiologia , Infecções Urinárias/microbiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Lipoproteínas/metabolismo
8.
BMC Microbiol ; 24(1): 74, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454332

RESUMO

OBJECTIVE: Multi-drug resistance (MDR) has notably increased in community acquired uropathogens causing urinary tract infections (UTIs), predominantly Escherichia coli. Uropathogenic E. coli causes 80% of uncomplicated community acquired UTIs, particularly in pre-menopausal women. Considering this high prevalence and the potential to spread antimicrobial resistant genes, the current study was conducted to investigate the presence of clinically important strains of E. coli in Pakistani women having uncomplicated cystitis and pyelonephritis. Women belonging to low-income groups were exclusively included in the study. Seventy-four isolates from urine samples were processed, phylotyped, and screened for the presence of two Single Nucleotide Polymorphisms (SNPs) particularly associated with a clinically important clonal group A of E. coli (CgA) followed by antibiotic susceptibility testing and genome sequence analysis. RESULTS: Phylogroup B2 was most prevalent in patients and 44% of isolates were positive for the presence of CgA specific SNPs in Fumarate hydratase and DNA gyrase subunit B genes. Antibiotic susceptibility testing showed widespread resistance to trimethoprim-sulfamethoxazole and extended-spectrum beta-lactamase production. The infection analysis revealed the phylogroup B2 to be more pathogenic as compared to the other groups. The genome sequence of E. coli strain U17 revealed genes encoding virulence, multidrug resistance, and host colonization mechanisms. CONCLUSIONS: Our research findings not only validate the significant occurrence of multidrug-resistant clonal group A E. coli (CgA) in premenopausal Pakistani women suffering from cystitis and pyelonephritis but also reveal the presence of genes associated withvirulence, and drug efflux pumps. The detection of highly pathogenic, antimicrobial-resistant phylogroup B2 and CgA E. coli strains is likely to help in understanding the epidemiology of the pathogen and may ultimately help to reduce the impact of these strains on human health. Furthermore, the findings of this study will particularly help to reduce the prevalence of uncomplicated UTIs and the cost associated with their treatment in women belonging to low-income groups.


Assuntos
Cistite , Infecções por Escherichia coli , Pielonefrite , Infecções Urinárias , Escherichia coli Uropatogênica , Humanos , Feminino , Escherichia coli , Infecções por Escherichia coli/diagnóstico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Paquistão/epidemiologia , Infecções Urinárias/diagnóstico , Resistência a Múltiplos Medicamentos , Cistite/tratamento farmacológico
9.
J Ethnopharmacol ; 328: 118056, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38490287

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Urinary tract infections (UTIs) are globally prevalent infectious diseases, predominantly caused by uropathogenic Escherichia coli (UPEC). The misuse of antibiotics has led to the emergence of several drug-resistant strains. Traditional Chinese Medicine (TCM) has its own advantages in the treatment of UTIs. HJ granules is a herbal formula used for the treatment of UTIs. However, its mechanism of action is not clear. AIM OF THE STUDY: The aim of this study was to investigate the therapeutic efficacy and mechanism of action of HJ granules in a rat model of UTI caused by Escherichia coli (E coli) CFT073. MATERIALS AND METHODS: SD rats were selected to establish a rat UTI model by injecting UPEC strain CFT073 into the bladder using the transurethral placement method. HJ granules were administered to rats after modelling and the efficacy of HJ granule was investigated by measuring urinary decanalogue, inflammatory factors in bladder tissue and pathological changes in the bladder after 3d of administration. Expression of sonic hedgehog (SHH), NOD-like receptor thermoprotein domain 3 (NLRP3), apoptosis-associated speck-like protein (ASC) and activation of cysteinyl aspartate specific proteinase-1 (caspase-1) were detected by western blotting and immunofluorescence staining in rat bladder tissue. NLRP3, ASC and caspase-1, a cysteine-containing aspartic protein, were expressed and activated. RESULTS: The results showed that infection of rats with UPEC resulted in increased pH and erythrocytes in bladder irrigation fluid; increased expression of IL-1ß, IL-6 and SHH and decreased expression of IL-10 in bladder tissue; and significant upregulation of the expression of both SHH and NLRP3 inflammasom and significant activation of NLRP3 inflammasom. HJ granules significantly increased the concentration of IL-10 in the bladder, inhibited the expression of SHH and NLRP3 inflammasom in bladder tissue, and suppressed the activation of NLRP3 inflammasom, thereby reducing inflammatory lesions in bladder tissue. CONCLUSION: HJ granules may improve bladder injury and treat UTIs by inhibiting the expression and activation of NLRP3 inflammasom.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Ratos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Escherichia coli , Interleucina-10 , Proteínas Hedgehog , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/patologia , Ratos Sprague-Dawley , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/patologia , Caspase 1/metabolismo
10.
Mol Biol Rep ; 51(1): 327, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393446

RESUMO

BACKGROUND: In the present study, we examine the prevalence of phylogenetic groups, O-serogroups, adhesin genes, antimicrobial resistance, the level of gene expression associated with biofilm formation, and the presence of extended-spectrum beta-lactamase (ESBL) in UPEC strains isolated from both pediatric and adult patients. METHODS: In this cross-sectional study, 156 UPEC isolates were collected from UTI patients. ESBL-producing isolates were detected using the double-disc synergy (DDS) method, and biofilm formation was assessed through a microplate assay. The presence of O-serogroups, adhesion factors and resistance genes, including ESBLs and PMQR genes, was detected by PCR, and isolates were categorized into phylogenetic groups using multiplex PCR. Additionally, the quantitative real-time PCR method was also used to determine the expression level of genes related to biofilm. RESULTS: During the study period, 50.6% (79/156) of the samples were obtained from children, and 49.4% (77/156) were from adults. The highest rate of resistance was to NA (91.7%), while FM (10.9%) had the lowest rate of antibiotic resistance. In addition, 67.9% (106/156) of UPEC isolates were ESBL producers. Most of UPEC isolates belonged to phylogenetic group B2 (37.1%). This study revealed that blaCTX-M and qnrS are widely distributed among UPEC isolates. The mean expression levels of fimA genes were significantly higher in non-biofilm producers than in biofilm producers (p < 0.01). CONCLUSIONS: The high antibiotic resistance rates in this study highlight the significance of local resistance monitoring and investigating underlying mechanisms. Our findings indicate the dominance of phylogroup B2 and group D as the prevailing phylogenetic groups. Consequently, it is imperative to investigate the epidemiological aspects and characterize UPEC isolates across diverse regions and time frames.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Adulto , Humanos , Criança , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Filogenia , Escherichia coli Uropatogênica/genética , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/tratamento farmacológico , Estudos Transversais , Farmacorresistência Bacteriana/genética , Hidrolases/genética , Biofilmes , Infecções Urinárias/tratamento farmacológico
11.
Microbiol Spectr ; 12(4): e0389623, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38376151

RESUMO

The rising rate of antimicrobial resistance continues to threaten global public health. Further hastening antimicrobial resistance is the lack of new antibiotics against new targets. The bacterial enzyme, 1-deoxy-d-xylulose 5-phosphate synthase (DXPS), is thought to play important roles in central metabolism, including processes required for pathogen adaptation to fluctuating host environments. Thus, impairing DXPS function represents a possible new antibacterial strategy. We previously investigated a DXPS-dependent metabolic adaptation as a potential target in uropathogenic Escherichia coli (UPEC) associated with urinary tract infection (UTI), using the DXPS-selective inhibitor butyl acetylphosphonate (BAP). However, investigations of DXPS inhibitors in vivo have not been conducted. The goal of the present study is to advance DXPS inhibitors as in vivo probes and assess the potential of inhibiting DXPS as a strategy to prevent UTI in vivo. We show that BAP was well-tolerated at high doses in mice and displayed a favorable pharmacokinetic profile for studies in a mouse model of UTI. Further, an alkyl acetylphosphonate prodrug (homopropargyl acetylphosphonate, pro-hpAP) was significantly more potent against UPEC in urine culture and exhibited good exposure in the urinary tract after systemic dosing. Prophylactic treatment with either BAP or pro-hpAP led to a partial protective effect against UTI, with the prodrug displaying improved efficacy compared to BAP. Overall, our results highlight the potential for DXPS inhibitors as in vivo probes and establish preliminary evidence that inhibiting DXPS impairs UPEC colonization in a mouse model of UTI.IMPORTANCENew antibiotics against new targets are needed to prevent an antimicrobial resistance crisis. Unfortunately, antibiotic discovery has slowed, and many newly FDA-approved antibiotics do not inhibit new targets. Alkyl acetylphosphonates (alkyl APs), which inhibit the enzyme 1-deoxy-d-xylulose 5-phosphate synthase (DXPS), represent a new possible class of compounds as there are no FDA-approved DXPS inhibitors. To our knowledge, this is the first study demonstrating the in vivo safety, pharmacokinetics, and efficacy of alkyl APs in a urinary tract infection mouse model.


Assuntos
Acetaldeído/análogos & derivados , Anti-Infecciosos , Infecções por Escherichia coli , Pentosefosfatos , Pró-Fármacos , Infecções Urinárias , Escherichia coli Uropatogênica , Animais , Camundongos , Infecções Urinárias/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/metabolismo , Anti-Infecciosos/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli Uropatogênica/metabolismo
12.
Microbiol Spectr ; 12(4): e0223623, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38385738

RESUMO

Sensory systems allow pathogens to differentiate between different niches and respond to stimuli within them. A major mechanism through which bacteria sense and respond to stimuli in their surroundings is two-component systems (TCSs). TCSs allow for the detection of multiple stimuli to lead to a highly controlled and rapid change in gene expression. Here, we provide a comprehensive list of TCSs important for the pathogenesis of uropathogenic Escherichia coli (UPEC). UPEC accounts for >75% of urinary tract infections (UTIs) worldwide. UTIs are most prevalent among people assigned female at birth, with the vagina becoming colonized by UPEC in addition to the gut and the bladder. In the bladder, adherence to the urothelium triggers E. coli invasion of bladder cells and an intracellular pathogenic cascade. Intracellular E. coli are safely hidden from host neutrophils, competition from the microbiota, and antibiotics that kill extracellular E. coli. To survive in these intimately connected, yet physiologically diverse niches E. coli must rapidly coordinate metabolic and virulence systems in response to the distinct stimuli encountered in each environment. We hypothesized that specific TCSs allow UPEC to sense these diverse environments encountered during infection with built-in redundant safeguards. Here, we created a library of isogenic TCS deletion mutants that we leveraged to map distinct TCS contributions to infection. We identify-for the first time-a comprehensive panel of UPEC TCSs that are critical for infection of the genitourinary tract and report that the TCSs mediating colonization of the bladder, kidneys, or vagina are distinct.IMPORTANCEWhile two-component system (TCS) signaling has been investigated at depth in model strains of Escherichia coli, there have been no studies to elucidate-at a systems level-which TCSs are important during infection by pathogenic Escherichia coli. Here, we report the generation of a markerless TCS deletion library in a uropathogenic E. coli (UPEC) isolate that can be leveraged for dissecting the role of TCS signaling in different aspects of pathogenesis. We use this library to demonstrate, for the first time in UPEC, that niche-specific colonization is guided by distinct TCS groups.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Infecções Urinárias , Sistema Urinário , Escherichia coli Uropatogênica , Recém-Nascido , Feminino , Humanos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Infecções Urinárias/microbiologia , Sistema Urinário/microbiologia , Bexiga Urinária/microbiologia , Infecções por Escherichia coli/microbiologia
13.
Clin Lab ; 70(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345976

RESUMO

BACKGROUND: The adhesion genes are responsible for biofilm production which leads to chronic diseases like urinary tract infections (UTIs). Uropathogenic Escherichia coli (UPEC) is the most predominant pathogen involved in UTIs. This study aims to evaluate the relationship between adhesion genes and bacterial biofilm that form by UPEC. METHODS: Fifty clinical isolates of E. coli from patients infected with UTIs were identified and antimicrobial resistance was tested by MIC assay. A polymerase chain reaction (PCR), a quick and sensitive assay to identify the adhesions operon (Afa, papG, flu, and fimH), was developed using eight primers and used for amplification. E. coli K-12 strain and E. coli J96 were used as a negative and a positive control for detection of adhesion genes. RESULTS: The study reported 70% of isolates produce strong biofilm. Adhesion genes showed as follow Afa (64% n = 33), papG (42% n = 23), flu (94% n = 52), fimH (86% n = 45). CONCLUSIONS: The resistance to non-Beta lactam antibiotic was significantly correlated with the availability of genes that encode for adhesion. These genes were highly correlated to biofilm formation in E. coli clinical isolates.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Humanos , Biofilmes , Infecções Urinárias/tratamento farmacológico , Proteínas de Escherichia coli/genética , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli Uropatogênica/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
14.
Ann Clin Microbiol Antimicrob ; 23(1): 20, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402146

RESUMO

BACKGROUND: Uropathogenic Escherichia coli (UPEC) is the main etiological agent behind community-acquired and hospital-acquired urinary tract infections (UTIs), which are among the most prevalent human infections. The management of UPEC infections is becoming increasingly difficult owing to multi-drug resistance, biofilm formation, and the possession of an extensive virulence arsenal. This study aims to characterize UPEC isolates in Tanta, Egypt, with regard to their antimicrobial resistance, phylogenetic profile, biofilm formation, and virulence, as well as the potential associations among these factors. METHODS: One hundred UPEC isolates were obtained from UTI patients in Tanta, Egypt. Antimicrobial susceptibility was assessed using the Kirby-Bauer method. Extended-spectrum ß-lactamases (ESBLs) production was screened using the double disk synergy test and confirmed with PCR. Biofilm formation was evaluated using the microtiter-plate assay and microscopy-based techniques. The phylogenetic groups of the isolates were determined. The hemolytic activity, motility, siderophore production, and serum resistance of the isolates were also evaluated. The clonal relatedness of the isolates was assessed using ERIC-PCR. RESULTS: Isolates displayed elevated resistance to cephalosporins (90-43%), sulfamethoxazole-trimethoprim (63%), and ciprofloxacin (53%). Ninety percent of the isolates were multidrug-resistant (MDR)/ extensively drug-resistant (XDR) and 67% produced ESBLs. Notably, there was an inverse correlation between biofilm formation and antimicrobial resistance, and 31%, 29%, 32%, and 8% of the isolates were strong, moderate, weak, and non-biofilm producers, respectively. Beta-hemolysis, motility, siderophore production, and serum resistance were detected in 64%, 84%, 65%, and 11% of the isolates, respectively. Siderophore production was correlated to resistance to multiple antibiotics, while hemolysis was more prevalent in susceptible isolates and associated with stronger biofilms. Phylogroups B2 and D predominated, with lower resistance and stronger biofilms in group B2. ERIC-PCR revealed considerable diversity among the isolates. CONCLUSION: This research highlights the dissemination of resistance in UPEC in Tanta, Egypt. The evident correlation between biofilm and resistance suggests a resistance cost on bacterial cells; and that isolates with lower resistance may rely on biofilms to enhance their survival. This emphasizes the importance of considering biofilm formation ability during the treatment of UPEC infections to avoid therapeutic failure and/or infection recurrence.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Egito , Virulência/genética , Filogenia , Hemólise , Farmacorresistência Bacteriana/genética , Fatores de Virulência/genética , Infecções Urinárias/microbiologia , Infecções por Escherichia coli/tratamento farmacológico , Hospitais , Biofilmes , Sideróforos/uso terapêutico
15.
J Med Chem ; 67(5): 3668-3678, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38308631

RESUMO

FmlH, a bacterial adhesin of uropathogenic Escherichia coli (UPEC), has been shown to provide a fitness advantage in colonizing the bladder during chronic urinary tract infections (UTIs). Previously reported ortho-biphenyl glycosides based on ßGal and ßGalNAc have excellent binding affinity to FmlH and potently block binding to its natural carbohydrate receptor, but they lack oral bioavailability. In this paper, we outline studies where we have optimized compounds for improved pharmacokinetics, leading to the discovery of novel analogues with good oral bioavailability. We synthesized galactosides with the anomeric O-linker replaced with more stable S- and C-linked linkers. We also investigated modifications to the GalNAc sugar and modifications to the biphenyl aglycone. We identified GalNAc 69 with an IC50 of 0.19 µM against FmlH and 53% oral bioavailability in mice. We also obtained a FimlH-bound X-ray structure of lead compound 69 (AM4085) which has potential as a new antivirulence therapeutic for UTIs.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Camundongos , Animais , Lectinas , Adesinas de Escherichia coli/química , Infecções Urinárias/tratamento farmacológico , Compostos de Bifenilo/química , Escherichia coli Uropatogênica/metabolismo , Infecções por Escherichia coli/tratamento farmacológico
16.
Microbiol Spectr ; 12(3): e0366123, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315025

RESUMO

Uropathogenic Escherichia coli (UPEC) is the primary causative agent of lower urinary tract infection (UTI). UTI presents a serious health risk and has considerable secondary implications including economic burden, recurring episodes, and overuse of antibiotics. A safe and effective vaccine would address this widespread health problem and emerging antibiotic resistance. Killed, whole-cell vaccines have shown limited efficacy to prevent recurrent UTI in human trials. We explored photochemical inactivation with psoralen drugs and UVA light (PUVA), which crosslinks nucleic acid, as an alternative to protein-damaging methods of inactivation to improve whole-cell UTI vaccines. Exposure of UPEC to the psoralen drug AMT and UVA light resulted in a killed but metabolically active (KBMA) state, as reported previously for other PUVA-inactivated bacteria. The immunogenicity of PUVA-UPEC as compared to formalin-inactivated UPEC was compared in mice. Both generated high UPEC-specific serum IgG titers after intramuscular delivery. However, using functional adherence as a measure of surface protein integrity, we found differences in the properties of PUVA- and formalin-inactivated UPEC. Adhesion mediated by Type-1 and P-fimbriae was severely compromised by formalin but was unaffected by PUVA, indicating that PUVA preserved the functional conformation of fimbrial proteins, which are targets of protective immune responses. In vitro assays indicated that although they retained metabolic activity, PUVA-UPEC lost virulence properties that could negatively impact vaccine safety. Our results imply the potential for PUVA to improve killed, whole-cell UTI vaccines by generating bacteria that more closely resemble their live, infectious counterparts relative to vaccines generated with protein-damaging methods. IMPORTANCE: Lower urinary tract infection (UTI), caused primarily by uropathogenic Escherichia coli, represents a significant health burden, accounting for 7 million primary care and 1 million emergency room visits annually in the United States. Women and the elderly are especially susceptible and recurrent infection (rUTI) is common in those populations. Lower UTI can lead to life-threatening systemic infection. UTI burden is manifested by healthcare dollars spent (1.5 billion annually), quality of life impact, and resistant strains emerging from antibiotic overuse. A safe and effective vaccine to prevent rUTI would address a substantial healthcare issue. Vaccines comprised of inactivated uropathogenic bacteria have yielded encouraging results in clinical trials but improvements that enhance vaccine performance are needed. To that end, we focused on inactivation methodology and provided data to support photochemical inactivation, which targets nucleic acid, as a promising alternative to conventional protein-damaging inactivation methods to improve whole-cell UTI vaccines.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Furocumarinas , Ácidos Nucleicos , Infecções Urinárias , Escherichia coli Uropatogênica , Vacinas , Humanos , Feminino , Animais , Camundongos , Idoso , Infecções por Escherichia coli/tratamento farmacológico , Qualidade de Vida , Recidiva Local de Neoplasia/tratamento farmacológico , Infecções Urinárias/microbiologia , Antibacterianos/farmacologia , Vacinas/farmacologia , Vacinas/uso terapêutico , Formaldeído/farmacologia , Formaldeído/uso terapêutico , Ácidos Nucleicos/farmacologia , Ácidos Nucleicos/uso terapêutico , Furocumarinas/farmacologia , Furocumarinas/uso terapêutico , Proteínas de Escherichia coli/metabolismo
17.
mBio ; 15(3): e0338823, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38353545

RESUMO

Urinary tract infections (UTIs) are one of the most common bacterial infections in humans, with ~400 million cases across the globe each year. Uropathogenic Escherichia coli (UPEC) is the major cause of UTI and increasingly associated with antibiotic resistance. This scenario has been worsened by the emergence and spread of pandemic UPEC sequence type 131 (ST131), a multidrug-resistant clone associated with extraordinarily high rates of infection. Here, we employed transposon-directed insertion site sequencing in combination with metabolomic profiling to identify genes and biochemical pathways required for growth and survival of the UPEC ST131 reference strain EC958 in human urine (HU). We identified 24 genes required for growth in HU, which mapped to diverse pathways involving small peptide, amino acid and nucleotide metabolism, the stringent response pathway, and lipopolysaccharide biosynthesis. We also discovered a role for UPEC resistance to fluoride during growth in HU, most likely associated with fluoridation of drinking water. Complementary nuclear magnetic resonance (NMR)-based metabolomics identified changes in a range of HU metabolites following UPEC growth, the most pronounced being L-lactate, which was utilized as a carbon source via the L-lactate dehydrogenase LldD. Using a mouse UTI model with mixed competitive infection experiments, we demonstrated a role for nucleotide metabolism and the stringent response in UPEC colonization of the mouse bladder. Together, our application of two omics technologies combined with different infection-relevant settings has uncovered new factors required for UPEC growth in HU, thus enhancing our understanding of this pivotal step in the UPEC infection pathway. IMPORTANCE: Uropathogenic Escherichia coli (UPEC) cause ~80% of all urinary tract infections (UTIs), with increasing rates of antibiotic resistance presenting an urgent threat to effective treatment. To cause infection, UPEC must grow efficiently in human urine (HU), necessitating a need to understand mechanisms that promote its adaptation and survival in this nutrient-limited environment. Here, we used a combination of functional genomic and metabolomic techniques and identified roles for the metabolism of small peptides, amino acids, nucleotides, and L-lactate, as well as the stringent response pathway, lipopolysaccharide biosynthesis, and fluoride resistance, for UPEC growth in HU. We further demonstrated that pathways involving nucleotide metabolism and the stringent response are required for UPEC colonization of the mouse bladder. The UPEC genes and metabolic pathways identified in this study represent targets for the development of innovative therapeutics to prevent UPEC growth during human UTI, an urgent need given the rapidly rising rates of global antibiotic resistance.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Humanos , Escherichia coli/genética , Fluoretos/metabolismo , Lipopolissacarídeos/metabolismo , Infecções Urinárias/microbiologia , Infecções por Escherichia coli/microbiologia , Genômica , Nucleotídeos/metabolismo , Lactatos/metabolismo , Escherichia coli Uropatogênica/genética
18.
mBio ; 15(2): e0317023, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38206009

RESUMO

Urinary tract infections (UTIs) in men are uncommon yet carry an increased risk for severe pyelonephritis and other complications. In models of Escherichia coli UTI, C3H/HeN mice develop high-titer pyelonephritis (most with renal abscesses) in a testosterone-dependent manner, but the mechanisms underlying this phenotype are unknown. Here, using female mouse models, we show that androgen exposure impairs neutrophil maturation in the upper and lower urinary tract, compounded by a reduction of neutrophil function within the infected kidney, enabling persistent high-titer infection and promoting abscess formation. Following intravesical inoculation with uropathogenic E. coli (UPEC), kidneys of androgen-exposed C3H mice showed delayed local pro-inflammatory cytokine responses while robustly recruiting neutrophils. These were enriched for an end-organ-specific population of aged but immature neutrophils (CD49d+, CD101-). Compared to their mature counterparts, these aged immature kidney neutrophils exhibited reduced function in vitro, including impaired degranulation and diminished phagocytic activity, while splenic, bone marrow, and bladder neutrophils did not display these alterations. Furthermore, aged immature neutrophils manifested little phagocytic activity within intratubular UPEC communities in vivo. Experiments with B6 conditional androgen receptor (AR)-deficient mice indicated rescue of the maturation defect when AR was deleted in myeloid cells. We conclude that the recognized enhancement of UTI severity by androgens is attributable, at least in part, to local impairment of neutrophil maturation in the urinary tract (largely via cell-intrinsic AR signaling) and a kidney-specific reduction in neutrophil antimicrobial capacity.IMPORTANCEAlthough urinary tract infections (UTIs) predominantly occur in women, male UTIs carry an increased risk of morbidity and mortality. Pyelonephritis in androgen-exposed mice features robust neutrophil recruitment and abscess formation, while bacterial load remains consistently high. Here, we demonstrate that during UTI, neutrophils infiltrating the urinary tract of androgen-exposed mice exhibit reduced maturation, and those that have infiltrated the kidney have reduced phagocytic and degranulation functions, limiting their ability to effectively control infection. This work helps to elucidate mechanisms by which androgens enhance UTI susceptibility and severity, illuminating why male patients may be predisposed to severe outcomes of pyelonephritis.


Assuntos
Infecções por Escherichia coli , Pielonefrite , Infecções Urinárias , Escherichia coli Uropatogênica , Feminino , Humanos , Masculino , Animais , Camundongos , Idoso , Androgênios , Neutrófilos/patologia , Escherichia coli , Abscesso/patologia , Infecções por Escherichia coli/microbiologia , Camundongos Endogâmicos C3H , Rim/microbiologia , Infecções Urinárias/microbiologia , Pielonefrite/microbiologia , Escherichia coli Uropatogênica/genética
19.
mBio ; 15(2): e0027723, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38236035

RESUMO

Siderophores are secreted ferric ion chelators used to obtain iron in nutrient-limited environmental niches, including human hosts. While all Escherichia coli express the enterobactin (Ent) siderophore system, isolates from patients with urinary tract infections additionally express the genetically distinct yersiniabactin (Ybt) siderophore system. To determine whether the Ent and Ybt systems are functionally redundant for iron uptake, we compared the growth of different isogenic siderophore biosynthetic mutants in the presence of transferrin, a human iron-binding protein. We observed that Ybt expression does not compensate for deficient Ent expression following low-density inoculation. Using transcriptional and product analysis, we found this non-redundancy to be attributable to a density-dependent transcriptional stimulation cycle in which Ybt functions as an autoinducer. These results distinguish the Ybt system as a combined quorum-sensing and siderophore system. These functions may reflect Ybt as a public good within bacterial communities or as an adaptation to confined, subcellular compartments in infected hosts. This combined functionality may contribute to the extraintestinal pathogenic potential of E. coli and related Enterobacterales.IMPORTANCEPatients with urinary tract infections are often infected with Escherichia coli strains carrying adaptations that increase their pathogenic potential. One of these adaptations is the accumulation of multiple siderophore systems, which scavenge iron for nutritional use. While iron uptake is important for bacterial growth, the increased metabolic costs of siderophore production could diminish bacterial fitness during infections. In a siderophore-dependent growth condition, we show that the virulence-associated yersiniabactin siderophore system in uropathogenic E. coli is not redundant with the ubiquitous E. coli enterobactin system. This arises not from differences in iron-scavenging activity but because yersiniabactin is preferentially expressed during bacterial crowding, leaving bacteria dependent upon enterobactin for growth at low cell density. Notably, this regulatory mode arises because yersiniabactin stimulates its own expression, acting as an autoinducer in a previously unappreciated quorum-sensing system. This unexpected result connects quorum-sensing with pathogenic potential in E. coli and related Enterobacterales.


Assuntos
Fenóis , Tiazóis , Infecções Urinárias , Escherichia coli Uropatogênica , Humanos , Sideróforos/metabolismo , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/metabolismo , Enterobactina/metabolismo , Ferro/metabolismo , Infecções Urinárias/microbiologia
20.
ACS Infect Dis ; 10(4): 1126-1136, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38287229

RESUMO

Urinary tract infections are commonly caused by uropathogenic Escherichia coli (UPEC), which usually presents multiple virulence and resistance mechanisms, making it difficult to treat. It has been demonstrated that silver and polymeric nanoparticles had potential against these pathogens. In this study, we synthesized thiol chitosan-coated silver nanoparticles (SH-Cs-AgNPs) and evaluated their antibacterial, antibiofilm and antiadherence activity against clinical isolates of UPEC. The SH-Cs-AgNPs showed a spherical shape with a size of 17.80 ± 2.67 nm and zeta potential of 18 ± 2 mV. We observed a potent antibacterial and antibiofilm activity as low as 12.5 µg/mL, as well as a reduction in the adherence of UPEC to mammalian cells at concentrations of 1.06 and 0.53 µg/mL. These findings demonstrate that SH-Cs-AgNPs have potential as a new therapeutic compound against infections caused by UPEC.


Assuntos
Quitosana , Nanopartículas Metálicas , Escherichia coli Uropatogênica , Animais , Prata/farmacologia , Quitosana/farmacologia , Antibacterianos/farmacologia , Biofilmes , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...